Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
medRxiv ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38605883

RESUMO

Objective: The Krebs cycle enzyme Aconitate Decarboxylase 1 (ACOD1) mediates itaconate synthesis in myeloid cells.. Previously, we reported that administration of 4-octyl itaconate abrogated lupus phenotype in mice. Here, we explore the role of the endogenous ACOD1/itaconate pathway in the development of murine lupus as well as their relevance in premature cardiovascular damage in SLE. Methods: We characterized Acod1 protein expression in bone marrow-derived macrophages and human monocyte-derived macrophages, following a TLR7 agonist (imiquimod, IMQ). Wild type and Acod1-/- mice were exposed to topical IMQ for 5 weeks to induce an SLE phenotype and immune dysregulation was quantified. Itaconate serum levels were quantified in SLE patients and associated to cardiometabolic parameters and disease activity. Results: ACOD1 was induced in mouse bone marrow-derived macrophages (BMDM) and human monocyte-derived macrophages following in vitro TLR7 stimulation. This induction was partially dependent on type I Interferon receptor signaling and specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum anti-dsDNA and proinflammatory cytokine levels, enhanced kidney immune complex deposition and proteinuria, when compared to the IMQ-treated WT mice. Consistent with these results, Acod1-/- BMDM exposed to IMQ showed higher proinflammatory features in vitro. Itaconate levels were decreased in SLE serum compared to healthy control sera, in association with specific perturbed cardiometabolic parameters and subclinical vascular disease. Conclusion: These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in SLE, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.

2.
iScience ; 26(12): 108411, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047069

RESUMO

Very-long-chain polyunsaturated fatty acids (VLCPUFAs; C24-38) constitute a unique class of PUFA that have important biological roles, but the lack of a suitable dietary source has limited research in this field. We produced an n-3 C24-28-rich VLCPUFA-oil concentrated from fish oil to study its bioavailability and physiological functions in C57BL/6J mice. The serum and retinal C24:5 levels increased significantly compared to control after a single-dose gavage, and VLCPUFAs were incorporated into the liver, brain, and eyes after 8-week supplementation. Dietary VLCPUFAs resulted in favorable cardiometabolic changes, and improved electroretinography responses and visual performance. VLCPUFA supplementation changed the expression of genes involved in PPAR signaling pathways. Further in vitro studies demonstrated that the VLCPUFA-oil and chemically synthesized C24:5 are potent agonists for PPARs. The multiple potential beneficial effects of fish oil-derived VLCPUFAs on cardiometabolic risk and eye health in mice support future efforts to develop VLCPUFA-oil into a supplemental therapy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38092139

RESUMO

RATIONALE: Serum amyloid A (SAA) is bound to high-density lipoproteins (HDL) in blood. Although SAA is increased in the blood of patients with asthma, it is not known whether this modifies asthma severity. OBJECTIVE: We sought to define the clinical characteristics of patients with asthma who have high SAA levels and assess whether HDL from SAA-high patients with asthma is proinflammatory. METHODS: SAA levels in serum from subjects with and without asthma were quantified by ELISA. HDLs isolated from subjects with asthma and high SAA levels were used to stimulate human monocytes and were intravenously administered to BALB/c mice. RESULTS: An SAA level greater than or equal to 108.8 µg/mL was defined as the threshold to identify 11% of an asthmatic cohort (n = 146) as being SAA-high. SAA-high patients with asthma were characterized by increased serum C-reactive protein, IL-6, and TNF-α; older age; and an increased prevalence of obesity and severe asthma. HDL isolated from SAA-high patients with asthma (SAA-high HDL) had an increased content of SAA as compared with HDL from SAA-low patients with asthma and induced the secretion of IL-6, IL-1ß, and TNF-α from human monocytes via a formyl peptide receptor 2/ATP/P2X purinoceptor 7 axis. Intravenous administration to mice of SAA-high HDL, but not normal HDL, induced systemic inflammation and amplified allergen-induced neutrophilic airway inflammation and goblet cell metaplasia. CONCLUSIONS: SAA-high patients with asthma are characterized by systemic inflammation, older age, and an increased prevalence of obesity and severe asthma. HDL from SAA-high patients with asthma is proinflammatory and, when intravenously administered to mice, induces systemic inflammation, and amplifies allergen-induced neutrophilic airway inflammation. This suggests that systemic inflammation induced by SAA-high HDL may augment disease severity in asthma.

4.
Sci Immunol ; 8(89): eadi8217, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922339

RESUMO

The IL-2 receptor α chain (IL-2Rα/CD25) is constitutively expressed on double-negative (DN2/DN3 thymocytes and regulatory T cells (Tregs) but induced by IL-2 on T and natural killer (NK) cells, with Il2ra expression regulated by a STAT5-dependent super-enhancer. We investigated CD25 regulation and function using a series of mice with deletions spanning STAT5-binding elements. Deleting the upstream super-enhancer region mainly affected constitutive CD25 expression on DN2/DN3 thymocytes and Tregs, with these mice developing autoimmune alopecia, whereas deleting an intronic region decreased IL-2-induced CD25 on peripheral T and NK cells. Thus, distinct super-enhancer elements preferentially control constitutive versus inducible expression in a cell type-specific manner. The mediator-1 coactivator colocalized with specific STAT5-binding sites. Moreover, both upstream and intronic regions had extensive chromatin interactions, and deletion of either region altered the super-enhancer structure in mature T cells. These results demonstrate differential functions for distinct super-enhancer elements, thereby indicating previously unknown ways to manipulate CD25 expression in a cell type-specific fashion.


Assuntos
Interleucina-2 , Fator de Transcrição STAT5 , Animais , Camundongos , Elementos Facilitadores Genéticos/genética , Interleucina-2/genética , Interleucina-2/farmacologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Receptores de Interleucina-2 , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
5.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572656

RESUMO

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Assuntos
Arginase , Influenza Humana , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmão/metabolismo , Mamíferos
6.
ERJ Open Res ; 9(4)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37589458

RESUMO

Lymphangioleiomyomatosis (LAM) is a multisystem disease affecting primarily women, characterised in the lung by proliferation of LAM cells, abnormal smooth muscle-like cells with dysfunctional tuberous sclerosis complex genes. This dysfunction results in activation of mechanistic target of rapamycin (mTOR), leading to LAM cell proliferation. Sirolimus (rapamycin) is the only United States Food and Drug Administration-approved treatment for pulmonary LAM, resulting in decreased LAM cell growth/size and stabilised lung function [1].

7.
Biomater Adv ; 153: 213579, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37566935

RESUMO

Engineering of myocardial tissues has become a promising therapeutic strategy for treating myocardial infarction (MI). However, a significant challenge remains in generating clinically relevant myocardial tissues that possess native microstructural characteristics and fulfill the requirements for implantation within the human body. In this study, a thick 3D myocardial construct with anisotropic myofibers and perfusable branched vascular channels is created with clinically relevant dimensions using a customized beam-scanning stereolithography printing technique. To obtain tissue-specific matrix niches, a decellularized extracellular matrix microfiber-reinforced gelatin-based bioink is developed. The bioink plays a crucial role in facilitating the precise manufacturing of a hierarchical microstructure, enabling us to better replicate the physiological characteristics of the native myocardial tissue matrix in terms of structure, biomechanics, and bioactivity. Through the integration of the tailored bioink with our printing method, we demonstrate a biomimetic architecture, appropriate biomechanical properties, vascularization, and improved functionality of induced pluripotent stem cell-derived cardiomyocytes in the thick tissue construct in vitro. This work not only offers a novel and effective means to generate biomimetic heart tissue in vitro for the treatment of MI, but also introduces a potential methodology for creating clinically relevant tissue products to aid in other complex tissue/organ regeneration and disease model applications.


Assuntos
Miocárdio , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos , Impressão Tridimensional , Estereolitografia
8.
J Nutr Biochem ; 117: 109348, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37044136

RESUMO

Persistent skin inflammation and impaired resolution are the main contributors to psoriasis and associated cardiometabolic complications. Omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are known to exert beneficial effects on inflammatory response and lipid function. However, a specific role of omega-3 PUFAs in psoriasis and accompanied pathologies are still a matter of debate. Here, we carried out a direct comparison between EPA and DHA 12 weeks diet intervention treatment of psoriasis-like skin inflammation in the K14-Rac1V12 mouse model. By utilizing sensitive techniques, we targeted EPA- and DHA-derived specialized pro-resolving lipid mediators and identified tightly connected signaling pathways by RNA sequencing. Treatment with experimental diets significantly decreased circulating pro-inflammatory cytokines and bioactive lipid mediators, altered psoriasis macrophage phenotypes and genes of lipid oxidation. The superficial role of these changes was related to DHA treatment and included increased levels of resolvin D5, protectin DX and maresin 2 in the skin. EPA treated mice had less pronounced effects but demonstrated a decreased skin accumulation of prostaglandin E2 and thromboxane B2. These results indicate that modulating psoriasis skin inflammation with the omega-3 PUFAs may have clinical significance and DHA treatment might be considered over EPA in this specific disease.


Assuntos
Ácidos Graxos Ômega-3 , Psoríase , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/metabolismo , Dieta , Inflamação/metabolismo , Psoríase/tratamento farmacológico , Ácidos Graxos/metabolismo
9.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945462

RESUMO

Aims: Patients with ADP-ribose-acceptor hydrolase 3 ( ARH3 ) deficiency exhibit stress-induced childhood-onset neurodegeneration with ataxia and seizures (CONDSIAS). ARH3 degrades protein-linked poly(ADP- ribose) (PAR) synthesized by poly(ADP-ribose)polymerase (PARP)-1 during oxidative stress, leading to cleavage of the ADP-ribose linked to protein. ARH3 deficiency leads to excess accumulation of PAR, resulting in PAR-dependent cell death or parthanatos. Approximately one-third of patients with homozygous mutant ARH3 die from cardiac arrest, which has been described as neurogenic, suggesting that ARH3 may play an important role in maintaining myocardial function. To address this question, cardiac function was monitored in Arh3 -knockout (KO) and - heterozygous (HT) mice. Methods and results: Arh3 -KO male mice displayed cardiac hypertrophy by histopathology and decreased cardiac contractility assessed by MRI. In addition, both genders of Arh3 -KO and -HT mice showed decreased cardiac contractility by dobutamine stress test assessed by echocardiography. A direct role of ARH3 on myocardial function was seen with a Langendorff-perfused isolated heart model . Arh3 -KO male mouse hearts showed decreased post-ischemic rate pressure products, increased size of ischemia-reperfusion (IR) infarcts, and elevated PAR levels. Consistently, in vivo IR injury showed enhanced infarct size in Arh3 -KO mice in both genders. In addition, Arh3 -HT male mice showed increased size of in vivo IR infarcts. Treatment with an FDA-approved PARP inhibitor, rucaparib, improved cardiac contractility during dobutamine-induced stress and exhibited reduced size of in vivo IR infarcts. To understand better the role of ARH3, CRISPR-Cas9 was used to generate different Arh3 genotypes of myoblasts and myotubes. Incubation with H2O2 decreased viability of Arh3 -KO and -HT myoblasts and myotubes, resulting in PAR-dependent cell death that was reduced by PARP inhibitors or by transfection with the Arh3 gene. Conclusion: ARH3 regulates PAR homeostasis in myocardium to preserve function and protect against oxidative stress; PARP inhibitors reduce the myocardial dysfunction seen with Arh3 mutations.

10.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945646

RESUMO

Arginine-specific mono-ADP-ribosylation is a reversible post-translational modification; arginine-specific, cholera toxin-like mono-ADP-ribosyltransferases (ARTCs) transfer ADP-ribose from NAD + to arginine, followed by cleavage of ADP-ribose-(arginine)protein bond by ADP-ribosylarginine hydrolase 1 (ARH1), generating unmodified (arginine)protein. ARTC1 has been shown to enhance tumorigenicity as does Arh1 deficiency. In this study, Artc1 -KO and Artc1/Arh1 -double-KO mice showed decreased spontaneous tumorigenesis and increased age-dependent, multi-organ inflammation with upregulation of pro-inflammatory cytokine TNF- α . In a xenograft model using tumorigenic Arh1 -KO mouse embryonic fibroblasts (MEFs), tumorigenicity was decreased in Artc1 -KO and heterozygous recipient mice, with tumor infiltration by CD8 + T cells and macrophages, leading to necroptosis, suggesting that ARTC1 promotes the tumor microenvironment. Furthermore, Artc1/Arh1 -double-KO MEFs showed decreased tumorigenesis in nude mice, showing that tumor cells as well as tumor microenvironment require ARTC1. By echocardiography and MRI, Artc1 -KO and heterozygous mice showed male-specific, reduced myocardial contractility. Furthermore, Artc1 -KO male hearts exhibited enhanced susceptibility to myocardial ischemia-reperfusion-induced injury with increased receptor-interacting protein kinase 3 (RIP3) protein levels compared to WT mice, suggesting that ARTC1 suppresses necroptosis. Overall survival rate of Artc1 -KO was less than their Artc1 -WT counterparts, primarily due to enhanced immune response and inflammation. Thus, anti-ARTC1 agents may reduce tumorigenesis but may increase multi-organ inflammation and decrease cardiac contractility.

11.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798189

RESUMO

ADP-ribosylation is a reversible reaction with ADP-ribosyltransferases catalyzing the forward reaction and ADP-ribose-acceptor hydrolases (ARHs) hydrolyzing the ADP-ribose acceptor bond. ARH2 is a member of the 39-kDa ARH family (ARH1-3), which is expressed in heart and skeletal muscle. ARH2 failed to exhibit any in vitro enzymatic activity. To determine its possible in vivo activities, Arh2 -knockout (KO) and - heterozygous (Het) mice were generated using CRISPR-Cas9. Arh2 -KO mice exhibited decreased cardiac contractility by MRI, echocardiography and dobutamine stress with cardiomegaly and abnormal motor function. Arh2 -Het mice showed results similar to those seen in Arh2 -KO mice except for cardiomegaly. Arh2 -KO and -Het mice and mouse embryonic fibroblasts (MEFs) developed spontaneous tumors and subcutaneous tumors in nude mice. We identified 13 mutations in Arh2 -Het MEFs and heterozygous tumors, corresponding to human ARH2 mutations in cancers obtained from COSMIC. Of interest, the L116R mutation in Arh2 gene plays a critical role in aggressive tumorigenesis in nude mice, corresponding to human ARH2 mutations in stomach adenocarcinoma. Both genders of Arh2 -KO and -Het mice showed increased unexpectedly deaths and decreased survival rate during a 24-month observation, caused by tumor, inflammation, non-inflammation (e.g., cardiomegaly, dental dysplasia), and congenital diseases. Thus, Arh2 plays a pivotal role in cardiac function, tumorigenesis, inflammation, and overall survival.

12.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955518

RESUMO

Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.


Assuntos
Aterosclerose , Ácidos Graxos Ômega-3 , Animais , Colesterol/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico , Camundongos , Camundongos Knockout , Ácido Oleico , Receptores de LDL/genética , Óleo de Soja
13.
Arthritis Rheumatol ; 74(12): 1971-1983, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35791960

RESUMO

OBJECTIVE: Itaconic acid, a Krebs cycle-derived immunometabolite, is synthesized by myeloid cells in response to danger signals to control inflammasome activation, type I interferon (IFN) responses, and oxidative stress. As these pathways are dysregulated in systemic lupus erythematosus (SLE), we investigated the role of an itaconic acid derivative in the treatment of established murine lupus. METHODS: Female (NZW × NZB)F1 lupus-prone mice were administered 4-octyl itaconate (4-OI) or vehicle starting after clinical onset of disease (30 weeks of age) for 4 weeks (n = 10 mice /group). At 34 weeks of age (peak disease activity), animals were euthanized, organs and serum were collected, and clinical, metabolic, and immunologic parameters were evaluated. RESULTS: Proteinuria, kidney immune complex deposition, renal scores of severity and inflammation, and anti-RNP autoantibodies were significantly reduced in the 4-OI treatment group compared to the vehicle group. Splenomegaly decreased in the 4-OI group compared to vehicle, with decreases in activation markers in innate and adaptive immune cells, increases in CD8+ T cell numbers, and inhibition of JAK1 activation. Gene expression analysis in splenocytes showed significant decreases in type I IFN and proinflammatory cytokine genes and increased Treg cell-associated markers in the 4-OI group compared to the vehicle group. In human control and lupus myeloid cells, 4-OI in vitro treatment decreased proinflammatory responses and B cell responses. CONCLUSIONS: These results support targeting immunometabolism as a potentially viable approach in autoimmune disease treatment, with 4-OI displaying beneficial roles attenuating immune dysregulation and organ damage in lupus.


Assuntos
Lúpus Eritematoso Sistêmico , Camundongos , Feminino , Humanos , Animais , Recém-Nascido , Camundongos Endogâmicos NZB , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Anticorpos Antinucleares
14.
Diagnostics (Basel) ; 12(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741248

RESUMO

Williams−Beuren syndrome (WS) results from the deletion of 25−27 coding genes, including elastin (ELN), on human chromosome 7q11.23. Elastin provides recoil to tissues; emphysema and chronic obstructive pulmonary disease have been linked to its destruction. Consequently, we hypothesized that elastin insufficiency would predispose to obstructive features. Twenty-two adults with WS (aged 18−55) and controls underwent pulmonary function testing, 6 min walk, and chest computed tomography (CT). Lung and airspace dimensions were assessed in Eln+/− and control mice via microCT and histology. The forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FVC) were lower in adults with WS (p < 0.0001 and p < 0.05, respectively). The FEV1/FVC ratio was more frequently below the lower limit of normal in cases (p < 0.01). The ratio of residual volume to total lung capacity (RV/TLC, percent predicted) was higher in cases (p < 0.01), suggesting air trapping. People with WS showed reduced exercise capacity (p < 0.0001). In Eln+/− mice, ex vivo lung volumes were increased (p < 0.0001), with larger airspaces (p < 0.001). Together these data show that elastin insufficiency impacts lung physiology in the form of increased air trapping and obstruction, suggesting a role for lung function monitoring in adults with WS.

15.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743192

RESUMO

Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFß-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.


Assuntos
Tecido Elástico , Proteína-Lisina 6-Oxidase , Animais , Aorta/metabolismo , Pressão Sanguínea , Cobre , Dilatação Patológica/patologia , Tecido Elástico/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
16.
Front Cardiovasc Med ; 9: 886813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665242

RESUMO

Background: Williams Beuren syndrome (WBS) is a recurrent microdeletion disorder that removes one copy of elastin (ELN), resulting in large artery vasculopathy. Early stenosis of the pulmonary vascular tree is common, but few data are available on longer-term implications of the condition. Methods: Computed tomography (CT) angiogram (n = 11) and echocardiogram (n = 20) were performed in children with WBS aged 3.4-17.8 years. Controls (n = 11, aged 4.4-16.8 years) also underwent echocardiogram. Eln +/- mice were analyzed by invasive catheter, echocardiogram, micro-CT (µCT), histology, and pressure myography. We subsequently tested whether minoxidil resulted in improved pulmonary vascular endpoints. Results: WBS participants with a history of main or branch pulmonary artery (PA) stenosis requiring intervention continued to exhibit increased right ventricular systolic pressure (RVSP, echocardiogram) relative to their peers without intervention (p < 0.01), with no clear difference in PA size. Untreated Eln +/- mice also show elevated RVSP by invasive catheterization (p < 0.0001), increased normalized right heart mass (p < 0.01) and reduced caliber branch PAs by pressure myography (p < 0.0001). Eln +/- main PA medias are thickened histologically relative to Eln +/+ (p < 0.0001). Most Eln +/- phenotypes are shared by both sexes, but PA medial thickness is substantially greater in Eln +/- males (p < 0.001). Eln +/- mice showed more acute proximal branching angles (p < 0.0001) and longer vascular segment lengths (p < 0.0001) (µCT), with genotype differences emerging by P7. Diminished PA acceleration time (p < 0.001) and systolic notching (p < 0.0001) were also observed in Eln +/- echocardiography. Vascular casting plus µCT revealed longer generation-specific PA arcade length (p < 0.0001), with increased PA branching detectable by P90 (p < 0.0001). Post-weaning minoxidil decreased RVSP (p < 0.01) and normalized PA caliber (p < 0.0001) but not early-onset proximal branching angle or segment length, nor later-developing peripheral branch number. Conclusions: Vascular deficiencies beyond arterial caliber persist in individuals with WBS who have undergone PA stenosis intervention. Evaluation of Eln +/- mice reveals complex vascular changes that affect the proximal and distal vasculatures. Minoxidil, given post-weaning, decreases RVSP and improves lumen diameter, but does not alter other earlier-onset vascular patterns. Our data suggest additional therapies including minoxidil could be a useful adjunct to surgical therapy, and future trials should be considered.

18.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L315-L332, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35043674

RESUMO

Treatment with mineralocorticoid receptor (MR) antagonists beginning at the outset of disease, or early thereafter, prevents pulmonary vascular remodeling in preclinical models of pulmonary arterial hypertension (PAH). However, the efficacy of MR blockade in established disease, a more clinically relevant condition, remains unknown. Therefore, we investigated the effectiveness of two MR antagonists, eplerenone (EPL) and spironolactone (SPL), after the development of severe right ventricular (RV) dysfunction in the rat SU5416-hypoxia (SuHx) PAH model. Cardiac magnetic resonance imaging (MRI) in SuHx rats at the end of week 5, before study treatment, confirmed features of established disease including reduced RV ejection fraction and RV hypertrophy, pronounced septal flattening with impaired left ventricular filling and reduced cardiac index. Five weeks of treatment with either EPL or SPL improved left ventricular filling and prevented the further decline in cardiac index compared with placebo. Interventricular septal displacement was reduced by EPL whereas SPL effects were similar, but not significant. Although MR antagonists did not significantly reduce pulmonary artery pressure or vessel remodeling in SuHx rats with established disease, animals with higher drug levels had lower pulmonary pressures. Consistent with effects on cardiac function, EPL treatment tended to suppress MR and proinflammatory gene induction in the RV. In conclusion, MR antagonist treatment led to modest, but consistent beneficial effects on interventricular dependence after the onset of significant RV dysfunction in the SuHx PAH model. These results suggest that measures of RV structure and/or function may be useful endpoints in clinical trials of MR antagonists in patients with PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Indóis , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Pirróis , Ratos , Disfunção Ventricular Direita/tratamento farmacológico
19.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34934004

RESUMO

Signal tranducer and activator of transcription 5 (STAT5) plays a critical role in mediating cellular responses following cytokine stimulation. STAT proteins critically signal via the formation of dimers, but additionally, STAT tetramers serve key biological roles, and we previously reported their importance in T and natural killer (NK) cell biology. However, the role of STAT5 tetramerization in autoimmune-mediated neuroinflammation has not been investigated. Using the STAT5 tetramer-deficient Stat5a-Stat5b N-domain double knockin (DKI) mouse strain, we report here that STAT5 tetramers promote the pathogenesis of experimental autoimmune encephalomyelitis (EAE). The mild EAE phenotype observed in DKI mice correlates with the impaired extravasation of pathogenic T-helper 17 (Th17) cells and interactions between Th17 cells and monocyte-derived cells (MDCs) in the meninges. We further demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated STAT5 tetramerization regulates the production of CCL17 by MDCs. Importantly, CCL17 can partially restore the pathogenicity of DKI Th17 cells, and this is dependent on the activity of the integrin VLA-4. Thus, our study reveals a GM-CSF-STAT5 tetramer-CCL17 pathway in MDCs that promotes autoimmune neuroinflammation.


Assuntos
Doenças Autoimunes/metabolismo , Doenças Neuroinflamatórias/metabolismo , Fator de Transcrição STAT5 , Animais , Quimiocina CCL17/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos/metabolismo , Camundongos , Multimerização Proteica , Fator de Transcrição STAT5/química , Fator de Transcrição STAT5/metabolismo , Células Th17/metabolismo
20.
JAMA Ophthalmol ; 139(9): 1029-1032, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34351381

RESUMO

IMPORTANCE: Asymmetric retinitis pigmentosa (RP) is a rare presentation of a normally symmetric condition. Histopathologic evidence should be examined to see if this asymmetry extends to the tissue and cellular levels. OBJECTIVE: To determine whether additional information can be obtained about asymmetric RP from studying clinical imaging and pathology correlates, including pathology samples from autopsied eyes. DESIGN, SETTING, AND PARTICIPANTS: In this case report, clinical and postmortem histopathological characteristics were compared in 2 eyes of a patient in her 50s with asymmetric RP. Individuals with rare mendelian diseases, such as RP, were studied using data from the curated National Eye Institute Eye Pathology collection. MAIN OUTCOME AND MEASURES: Results of clinical evaluation, multimodal retinal imaging, histopathology, and molecular genetic testing in a case of nonsyndromic asymmetric RP using resources from the ocular pathology collection. RESULTS: Eyes from a deceased patient in her 50s with nonsyndromic asymmetric RP found within the ocular pathology collection were studied. The patient was diagnosed with RP as an adolescent and presented in her 50s to the eye clinic with advanced RP, with the left eye affected much more severely than the right. The patient's phenotype was studied using in vivo imaging and postmortem histopathology to identify interocular differences in tissue degeneration. Extraction of blood-derived DNA and formalin-fixed paraffin-embedded DNA from autopsied eyes analyzed using next-generation sequencing did not yield a definitive molecular diagnosis nor significant tissue differences. CONCLUSIONS AND RELEVANCE: This study demonstrates newly reported histopathological and molecular correlates in asymmetric RP. This report also highlights the relevance of studying previously seen patients and reevaluating their conditions using resources within the ocular pathology collection to gain further insight on their disease.


Assuntos
Retinite Pigmentosa , Adolescente , DNA , Feminino , Humanos , Mutação , Linhagem , Fenótipo , Retina , Retinite Pigmentosa/diagnóstico , Retinite Pigmentosa/genética , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...